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Abstract
Aims/hypothesis  Gestational diabetes mellitus (GDM) affects 14% of all pregnancies worldwide and is associated with 
cardiometabolic risk. We aimed to exploit high-resolution wearable device time-series data to create a fine-grained physi-
ological characterisation of the postpartum GDM state in free-living conditions, including clinical variables, daily glucose 
dynamics, food and drink consumption, physical activity, sleep patterns and heart rate.
Methods  In a prospective observational study, we employed continuous glucose monitors (CGMs), a smartphone food diary, 
triaxial accelerometers and heart rate and heart rate variability monitors over a 2 week period to compare women who had 
GDM in the previous pregnancy (GDM group) and women who had a pregnancy with normal glucose metabolism (non-
GDM group) at 1–2 months after delivery (baseline) and 6 months later (follow-up). We integrated CGM data with ingestion 
events recorded with the smartphone app MyFoodRepo to quantify the rapidity of returning to preprandial glucose levels 
after meal consumption. We inferred the properties of the underlying 24 h rhythm in the baseline glucose. Aggregating the 
baseline and follow-up data in a linear mixed model, we quantified the relationships between glycaemic variables and wear-
able device-derived markers of circadian timing.
Results  Compared with the non-GDM group (n=15), the GDM group (n=22, including five with prediabetes defined based 
on fasting plasma glucose [5.6–6.9 mmol/l (100–125 mg/dl)] and/or HbA1c [39–47 mmol/mol (5.7–6.4%)]) had a higher 
BMI, HbA1c and mean amplitude of glycaemic excursion at baseline (all p≤0.05). Integrating CGM data and ingestion events 
showed that the GDM group had a slower postprandial glucose decrease (p=0.01) despite having a lower proportion of car-
bohydrate intake, similar mean glucose levels and a reduced amplitude of the underlying glucose 24 h rhythm (p=0.005). 
Differences in CGM-derived variables persisted when the five women with prediabetes were removed from the comparison. 
Longitudinal analysis from baseline to follow-up showed a significant increase in fasting plasma glucose across both groups. 
The CGM-derived metrics showed no differences from baseline to follow-up. Late circadian timing (i.e. sleep midpoint, 
eating midpoint and peak time of heart rate) was correlated with higher fasting plasma glucose and reduced amplitudes of 
the underlying glucose 24 h rhythm (all p≤0.05).
Conclusions/interpretation  We reveal GDM-related postpartum differences in glucose variability and 24 h rhythms, even 
among women clinically considered to be normoglycaemic. Our results provide a rationale for future interventions aimed at 
improving glucose variability and encouraging earlier daily behavioural patterns to mitigate the long-term cardiometabolic 
risk of GDM.
Trial registration  ClinicalTrials.gov no. NCT04642534

Keywords  Circadian rhythms · Continuous glucose monitoring · Gestational diabetes mellitus · Mean amplitude of 
glycaemic excursion · Postpartum period · Smartphone food diary app · Wearable devices
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Introduction

Gestational diabetes mellitus (GDM) is characterised by 
glucose intolerance in the second or third trimester of preg-
nancy that was not clearly overt diabetes prior to gestation 
[1]. While blood glucose levels typically normalise after 
delivery, women with GDM have up to tenfold higher risk 
of developing type 2 diabetes in the long term [2], as well as 
higher risk of developing the metabolic syndrome [3], CVD 
[4, 5] and kidney disease [6]. Considering that GDM affects 
approximately 10% of all pregnancies in Switzerland [7] and 
14% worldwide [8], understanding the causes of elevated 
postpartum health risks and the risk-mitigation strategies 
represents a major health challenge.

Overweight, obesity, unhealthy diet and lack of exercise 
are important risk factors for the subsequent development of 
type 2 diabetes among women with GDM [9]. BMI and post-
partum weight retention are major determinants of future 
type 2 diabetes risk [10]. Despite these established risk fac-
tors, the more precise physiological changes after GDM, 
even in the presence of a normoglycaemic clinical pheno-
type, and the role of the 24 h body clock remain unclear.

A new avenue to better identify the targets of lifestyle 
interventions is the use of wearable technologies that meas-
ure physiological signals in daily routine with high temporal 

resolution. Compared with glucose measurements at a sin-
gle time point, continuous glucose monitoring can reveal 
the glucose dynamics in response to external perturbations 
such as carbohydrate-containing meals. This is particularly 
relevant for biomarkers of short-term glucose variability 
[11] that are hypothesised to contribute to diabetic com-
plications through oxidative stress and endothelial func-
tion [12]. In parallel, the content and timing of each meal 
can be recorded by smartphone food diary applications. 
We recently published a computational method integrating 
ingestion events and data from continuous glucose moni-
tors (CGMs) to model glucose levels as a combination of 
food-driven spikes and an underlying 24 h function [13]. 
The model parameters describe personalised features such as 
the postprandial glucose increases, the rapidity of returning 
to preprandial glucose levels after meal consumption, and 
the underlying glucose 24 h rhythm. While these param-
eters were previously quantified in a healthy population, it 
remains to be determined whether these fine-grained metrics 
can detect perturbed glucose dynamics in women with and 
without GDM in the postpartum period.

Circadian oscillators in the brain and in peripheral organs 
allow the body to anticipate daily environmental changes 
[14]. The circadian clock has a major impact on metabo-
lism through energy balance, the endocrine system and 
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direct regulation of metabolites [15–18], and circadian dis-
ruption is associated with type 2 diabetes in mouse models 
and humans [19, 20]. Wearable devices offer the capacity to 
quantify circadian physiological rhythmicity in free-living 
conditions. For example, sleep variables can be extracted 
from actigraphy data [21] and meal timing can be recorded 
using a smartphone application [22–24]. The timing of 
external behavioural cues such as sleep can influence glu-
cose tolerance in individuals [25, 26], and later eating tim-
ing is associated with increased weight and cardiometabolic 
risk [27–29]. The in-depth investigation of the connection 
between circadian system changes and pathogenesis of meta-
bolic diseases thus holds promise for refined diagnostics of 
metabolic diseases and developing personalised therapeutic 
approaches that consider the time dimension.

The objective of this study was to characterise the resid-
ual differences between GDM and non-GDM groups in the 
postpartum period across a range of emerging metabolic 
and circadian variables derived from multimodal wear-
able devices, including CGMs, a smartphone food diary 
app, physical activity and heart rate, in addition to standard 
clinical markers of glycaemic control. We aimed to identify 
differences between women with and without GDM at 1–2 
months postpartum and 6 months later, and to character-
ise the relationships between circadian timing and glucose 
regulation in the postpartum period. We hypothesised that 
despite the clinically normoglycaemic phenotype in early 
postpartum, the fine-grained analysis with multimodal wear-
able devices could uncover differences in circadian timing 
and glucose regulation when comparing women with and 
without GDM.

Methods

Recruitment

In a prospective observational study at Lausanne University 
Hospital (CHUV) in Switzerland (ClinicalTrials.gov regis-
tration no. NCT04642534; Ethics Committee CER-VD no. 
2019–01207), we recruited postpartum women who had 
GDM in the previous pregnancy (GDM group) and women 
who had a pregnancy with normal glucose metabolism 
(non-GDM group). GDM was diagnosed at 24–32 gesta-
tional weeks, according to the International Association of 
Diabetes and Pregnancy Study Groups consensus criteria 
[30]. Information on the study was provided during their 
antenatal appointment at the Maternity clinic or at the end 
of their pregnancy. Each participant gave written consent in 
accordance with the Declaration of Helsinki. The recruit-
ment was conducted from February 2020 to June 2022 and 
was paused intermittently during the COVID-19 pandemic 

as pregnant and postpartum women were considered at risk 
and access to research facilities was not permitted.

We included mothers at 1–2 months postpartum, who 
were aged 18–40 years, were breastfeeding at inclusion 
and were confident users of a smartphone compatible with 
the MyFoodRepo app (iOS, Android) [23, 31] able to take 
regular pictures of food/drinks. We excluded women with 
pre-existing diabetes (i.e. diagnosed prior to the pregnancy), 
or with a major illness/fever, who were enrolled in another 
study, planned for shift work after maternity leave, or unable 
to give informed consent or follow the study procedures. At 
baseline, some women were diagnosed with prediabetes but 
were not excluded from the study nor treated pharmacologi-
cally. The eligibility criteria and reasons for exclusion are 
detailed in the study flowchart (electronic supplementary 
material [ESM] Fig. 1).

Measurements were conducted at two main time points: 
at baseline in the early postpartum period (i.e. between 1 and 
2 months after delivery [visits 1 and 2, including continuous 
measurements during the 2 week interval]); and at follow-
up 6 months later (i.e. at 7–8 months after delivery [visits 4 
and 5 and the 2 week interval]). Between both time points, 
we made a phone call (visit 3) to gather information from 
additional questionnaires and obtain self-reported weight.

Clinical measurements

We recorded data on demographics, lifestyle (smoking status 
and physical activity using the short form of International 
Physical Activity Questionnaire [32]), chronotype (Morn-
ingness–Eveningness Questionnaire [33]), sleep dura-
tion and times (adapted from the Pittsburgh Sleep Quality 
Index [34]), anthropometrics, BP, fasting plasma glucose, 
HbA1c and lipid profile. Prediabetes was defined as a fast-
ing plasma glucose 5.6–6.9 mmol/l (100–125 mg/dl) and/
or HbA1c 39–47 mmol/mol (5.7–6.4%) at baseline [1]. See 
ESM Methods (Clinical measurements) for further details.

Wearable device data

Clinical measurements and questionnaire data were comple-
mented with data from wearable devices (i.e. the smartphone 
food diary app MyFoodRepo to record time-stamped food 
and drink consumption), CGM and a triaxial accelerometer 
monitoring physical activity, heart rate and sleep. For each 
participant, we collected data using the following devices 
over 2 weeks at each time point.

The smartphone app MyFoodRepo recorded the time-
stamps along with pictures, barcodes of packaged items, 
or free text descriptions of all consumed food items and 
drinks [23, 31]. The macronutrient composition of each 
consumed item was automatically extracted from a con-
stantly updated nutritional composition table, then verified 
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by trained dietitians. The eating duration was defined as the 
time interval between the 2.5th and the 97.5th percentiles 
of all time-stamped ingestion events over 2 weeks, and the 
eating midpoint was defined as the 50th percentile. Continu-
ous glucose monitoring data was recorded with an Abbott 
FreeStyle Libre Pro device for 2 weeks; this device reports 
interstitial glucose every 15 mins. CGM metrics related to 
glycaemic control were extracted from the CGM data [35], 
where we focused on the mean glucose level, CV (SD/mean) 
and the mean amplitude of glycaemic excursions (MAGE) 
[36]. Actigraphy was assessed using the triaxial accelerom-
eter GENEActiv (Activinsights, UK). Data on daily activ-
ity and sleep–wake cycles were analysed with the GGIR 
package in R (v4.0.0) [21], and we extracted the sleep mid-
point and sleep duration. The CamNTech ActiHeart device 
(version 4) assessed physical activity (activity counts [pro-
prietary algorithm]), heart rate (beats/min) and heart rate 
variability (using root mean square of successive differences 
[1/RMSSD] between normal heartbeats during 24–72 h at 
each time point [37]). See ESM Methods (Wearable device 
data) for details.

Statistical analyses

Continuous variables are reported as mean ± SD and com-
pared with unpaired two sample t test, using the Welch 
separate variances t test when sample sizes are different 
[38] using the ‘pingouin’ package (v0.5.3) within Python, 
available from conda-forge at https://​anaco​nda.​org/​conda-​
forge/​pingo​uin. Non-normally distributed continuous vari-
ables (e.g. serum lipids and MAGE) are reported as median 
(IQR) and compared with the Mann–Whitney U test (i.e. 
Wilcoxon rank-sum test). Categorical variables are presented 
as number of participants (% in group) and compared using 
the Fischer exact test. We performed a sensitivity analysis 
according to prediabetes status.

Associations between clinical, questionnaire and wear-
able device variables with glycaemic variables were quanti-
fied by combining the baseline and follow-up data within a 
linear mixed regression model accounting for repeated data 
in individual participants. The aim of the random effect was 
to account for potential correlations within the same par-
ticipants, and the model was fitted using the ‘MixedLM’ 
class from the ‘statsmodels’ library (v0.13.0), available 
from conda-forge at https://​anaco​nda.​org/​conda-​forge/​stats​
models. We performed a complete-case analysis using all 
available data and hence no imputation methods were used 
for missing data.

Modelling of ingestion events and glucose data  We com-
bined the ingestion events with CGM data based on a 
recently published computational framework to extract indi-
vidual parameters related to glucose responses to ingestion 

events (Fig. 1a) [13]. The MyFoodRepo app provided a list 
of time-stamps of each consumed food and drink (depicted 
at time t=0 in Fig. 1a). The increases in glucose caused 
by meals (termed ‘response heights’, Fig. 1a) were left as 
free parameters which were fit to the data during the model 
inference. After glucose increase, the model also learnt a 
characteristic ‘response t½’ (Fig. 1a) describing how long 
the glucose takes to return to baseline. Even when postpran-
dial glucose spikes caused by meals were accounted for in 
the model, the meal model alone left systematic 24 h trends 
in the model residual (see ESM Results), thus an underlying 
24 h cosinor function was also included. The 24 h cosinor 
function is described by ‘baseline’, ‘peak-to-trough amplitude’ 
and ‘peak time’ parameters (schematic in Fig. 2a), which were 
also learnt for each participant. See ESM Methods (Statistical 
analyses) for further details.

Cosinor analysis of Actiheart and GENEActiv data  As the 
time-length of data was shorter for Actiheart than for the 
other wearable devices (between 2 and 4 days), we used 
a simplified approach based on cosinor regression with a 
fixed period of 24 h. The model for the cosinor function is 
as follows:

where y(t) represents the Actiheart signal (either activity 
counts, heart rate or heart rate variability), A0 is the base-
line, A1 is the amplitude, w is the frequency (fixed to give a 
period of 24 h) and Φ is the peak time. We fit this function 
to the data by minimising the least squared error using the 
‘curve_fit’ function within SciPy (v1.7.3), available from 
conda-forge at https://​anaco​nda.​org/​conda-​forge/​scipy. We 
also applied this approach to the GENEActiv activity data.

No sample size estimation was performed prior to the 
study due to its pilot nature in this specific population of 
postpartum women. We initially aimed at 15 participants in 
each group and continued recruitment to account for with-
drawals, loss to follow-up and missing data. A p value below 
0.05 was considered significant and no adjustment for multi-
ple testing was performed in this exploratory study.

Results

Among 199 individuals screened for participation, 22 were 
included in the GDM group and 15 in the non-GDM group 
(for study flowchart, see ESM Fig. 1). The age, education 
level, smoking status and mode of breastfeeding were not 
statistically different between the two groups (Table 1).

y(t) = A
0
+ A

1
(1 + cos(w(t − �)))∕2

https://anaconda.org/conda-forge/pingouin
https://anaconda.org/conda-forge/pingouin
https://anaconda.org/conda-forge/statsmodels
https://anaconda.org/conda-forge/statsmodels
https://anaconda.org/conda-forge/scipy
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Clinical measurements show increased metabolic 
dysfunction in the GDM group at 1–2 months 
postpartum

At baseline (1–2 months postpartum), the mean BMI was 
different between the GDM and non-GDM groups (mean dif-
ference +3.66 kg/m2 [95% CI 0.29, 7.03], p=0.03; Table 1); 
HbA1c also differed between groups (mean difference +2.85 
mmol/mol [95% CI 0.35, 5.35 mmol/mol] or +0.26% [95% 
CI 0.03, 0.49%], p=0.03; Table 1 and ESM Fig. 2a). The 
difference in BMI and HbA1c was no longer significant in 
a sensitivity analysis without the five women with GDM 
and prediabetes at the first study visit. The other clinical 
measurements were not different between groups (Table 1).

Increased energy intake from fat and reduced 
energy intake from carbohydrates in the GDM group

Energy intake from carbohydrates was higher in the non-
GDM group (mean ± SD 44.9±5.6%) than in the GDM 
group (mean ± SD 39.4±6.0%, p=0.02), while the energy 
intake from fat was lower in the non-GDM group (mean 

± SD 39.0±4.2%) than in the GDM group (mean ± SD 
43.5±5.9%, p=0.03; Table 2 and ESM Fig. 2b).

The chrononutrition-related metrics derived from the 
MyFoodRepo app showed that the mean eating window 
and eating midpoint were similar between groups (Table 2). 
However, these values showed associations with glycaemic 
variables in a continuous analysis pooling data from both 
groups and time points (see below).

Higher glucose variability in the GDM group, even 
in the absence of prediabetes

While the mean glucose and CV calculated from the CGM 
data were not different between groups at baseline (both 
p≥0.14; Table 2 and ESM Fig. 2c), MAGE was higher in the 
GDM group (median 1.46 [IQR 1.32–1.69] mmol/l) than in 
the non-GDM group (median 1.26 [IQR 1.08–1.38] mmol/l, 
p=0.04). Furthermore, when women with prediabetes at 
baseline were excluded in a sensitivity analysis (5/22 in the 
GDM group), the difference in MAGE persisted (p=0.02).

Comparing the mean 24 h glucose profiles between 
groups did not reveal a clear signal due to high interindi-
vidual heterogeneity (ESM Fig. 3). This motivated the use 

Fig. 1   Dynamical modelling of 
glucose levels reveals differ-
ences in glucose response to 
ingestion events. (a) Schematic 
illustrating how a shorter 
glucose t½ leads to a faster 
return to baseline levels after 
ingestion. (b) Comparison of 
glucose t½ between non-GDM 
(blue) and GDM (red) groups. 
Each data point represents 
a unique participant. (c, d) 
Examples of participants with a 
short (c, participant ID 03, non-
GDM group, fast dynamics) 
and long (d, participant ID 29, 
GDM group, slow dynamics) 
glucose t½. Blue, CGM raw 
data; orange, model prediction 
incorporating ingestion events 
and the underlying 24 h glucose 
rhythm; black, the underlying 
24 h glucose rhythm; dashed 
lines, meal time-stamps. a.u., 
arbitrary unit
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of a computational model combining ingestion events and 
CGM data to better characterise the glucose dynamics for 
each participant.

Glucose decrease after meal consumption is slower 
in the GDM group

Figure 1a shows a schematic of the glucose dynamics 
model, which estimates the height of the glucose spikes 
(termed ‘response heights’) after food or drink consump-
tion, as well as the time required for glucose to return 
to baseline after a spike (termed ‘response t½’). Among 
these glucose model parameters (Table 2), the response t½ 
was ~30 min longer (i.e. slower postprandial decrease of 
glucose) in the GDM group than in the non-GDM group 
at baseline (p=0.01, Fig. 1b); this was in the absence of 
higher carbohydrate intake in women with GDM (Table 2). 
As an example, the participant with the shortest response 
t½ (participant ID 03, who was in the non-GDM group) 
showed rapid responses to meals, with glucose returning 
quickly to baseline levels after meals (Fig. 1c). In contrast, 
the participant with the longest t½ (ID 29, who was in the 
GDM group) showed comparatively much slower glucose 

responses, where glucose excursions visibly took much 
longer to return to baseline levels after ingestion events 
(Fig. 1d).

Lower amplitude of the underlying glucose 24 h 
rhythm in the GDM group

The glucose dynamics model also provides the underlying 
glucose 24 h rhythm (schematic shown in Fig. 2a), with the 
amplitude being higher in the non-GDM group than in the 
GDM group at baseline (i.e. with more pronounced oscil-
lations around the 24 h clock [p=0.005, Table 2, Fig. 2b]). 
The participant with the highest amplitude showed a regular 
underlying 24 h rhythm, with ingestion events causing fur-
ther glucose spikes on top of the oscillating trendline (ID 05, 
who was in the non-GDM group, Fig. 2c), while this 24 h 
rhythm was barely detectable in the participant with the low-
est amplitude (ID 17, who was in the GDM group, Fig. 2d). 
The amplitude of the underlying glucose 24 h rhythm did 
not affect overall glucose variability. (see ESM Results and 
ESM Fig. 4 for further details).

Fig. 2   Dynamical modelling of 
glucose levels reveals differ-
ences in the underlying 24 h 
glucose rhythm. (a) Schematic 
illustrating the parameters of the 
underlying 24 h glucose rhythm. 
(b) Comparison of 24 h glucose 
amplitude between non-GDM 
(blue) and GDM (red) groups. 
Each data point represents 
a unique participant. (c, d) 
Examples of participants with 
a high amplitude (c, participant 
ID 05, non-GDM group) and 
low amplitude (d, participant 
ID 17, GDM group) in 24 h glu-
cose rhythm. Blue, CGM raw 
data; orange, model prediction 
incorporating ingestion events 
and the underlying 24 h glucose 
rhythm; black, the underlying 
24 h glucose rhythm; dashed 
lines, meal time-stamps
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Fasting glucose and cholesterol evolve 
during the postpartum period

We assessed the evolution of clinical and glycaemic vari-
ables from baseline (1–2 months postpartum; median 42 
[range 26–65] days since delivery) to follow-up (6 months 
later; median 221 [range 200–285] days since delivery). At 
follow-up, there was no difference in breastfeeding mode 
between groups (p=0.45). The comparison across both 
groups revealed a decrease in waist circumference, total cho-
lesterol and LDL-cholesterol (all p≤0.001) and an increase 

in fasting plasma glucose (p=0.02) over time (ESM Fig. 5a), 
but no between-group differences in these changes (ESM 
Fig. 5b) (see ESM Results for further details).

Glycaemic variables are correlated with sleep 
behaviour and ‘eveningness’ across both groups

Pooling baseline and follow-up data from both groups to 
increase power in a linear mixed model confirmed the known 
association between BMI and both HbA1c and fasting plasma 
glucose (Fig. 3a, b). We also found that a high amplitude 

Table 1   Baseline clinical 
characteristics of the GDM and 
non-GDM groups

Data are presented as means ± SD, or medians (IQR) if not normally distributed, or n (% in group) for cat-
egorical variables
a Prediabetes was defined as a fasting plasma glucose 5.6–6.9 mmol/l (100–125 mg/dl) and/or HbA1c 39–47 
mmol/mol (5.7–6.4%)
b In the non-GDM group, two participants had no measured HDL-cholesterol and thus no calculated LDL-
cholesterol levels

Characteristic GDM group
(n=22)

Non-GDM group
(n=15)

p value

Demographics
  Age, years 32.7±4.1 30.3±5.5 0.19
  Education 0.37
    Apprenticeship 7 (31.8) 4 (26.7)
    College/High school 4 (18.2) 1 (6.7)
    Professional school 3 (13.6) 6 (40.0)
    University/University of applied sciences 8 (36.4) 4 (26.7)
  Smoking status 0.26
    Current 4 (18.2) 0 (0.0)
    Past 5 (22.7) 5 (33.3)
    Never 13 (59.1) 10 (66.7)
  Parity 0.68
    1 13 (59.1) 10 (66.7)
    2 8 (36.4) 5 (33.3)
    ≥3 1 (4.5) 0 (0.0)
  Breastfeeding 0.51
    Exclusive breastfeeding 12 (54.5) 10 (66.7)
    Mixed (breastfeeding + bottle) 10 (45.5) 5 (33.3)
Clinical variables
  BMI, kg/m2 28.7±5.6 25.0±4.2 0.03
  Waist circumference, cm 93.5±14.6 85.7±9.0 0.06
  WHR 0.86±0.06 0.83±0.05 0.20
  Systolic BP, mmHg 111.8±15.1 116.5±9.1 0.26
  Diastolic BP, mmHg 72.5±9.1 76.7±7.0 0.13
  Fasting plasma glucose, mmol/l 4.9±0.5 4.7±0.3 0.07
  HbA1c, mmol/mol (IFCC) 34.9±4.3 32.0±3.0 0.03
  HbA1c, % (DCCT) 5.3±0.4 5.1±0.3 0.03
  Prediabetesa 5 (22.7) 0 (0.0) 0.07
  Total cholesterol, mmol/l 5.4 (4.7–5.9) 5.8 (4.8–6.2) 0.39
  HDL-cholesterolb, mmol/l 1.5 (1.3–1.8) 1.8 (1.4–1.8) 0.56
  LDL-cholesterolb, mmol/l 3.2 (2.6–3.7) 3.6 (2.9–4.1) 0.30
  Triacylglycerols, mmol/l 1.1 (0.8–1.4) 0.9 (0.8–1.1) 0.28
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of glucose 24 h rhythm was associated with more physical 
activity (as measured with the International Physical Activ-
ity Questionnaire, p=0.01, Fig. 3c), high HDL-cholesterol 
and low triacylglycerols (both p≤0.004, ESM Fig. 6).

We then explored the relationships between glycaemic 
variables and sleep behaviour and chronotype as assessed 
with questionnaires. Late sleep midpoint was associated 
with higher fasting plasma glucose and weaker amplitudes 
in the underlying 24 h glucose rhythm (both p=0.02, Fig. 3d, 
e). The eveningness score and a short sleep duration were 
associated with higher fasting plasma glucose (p=0.049 and 
0.03, respectively, Fig. 3a).

Wearable device‑derived markers of late circadian 
timing are associated with higher fasting plasma 
glucose and lower amplitude of glucose 24 h rhythm

Finally, we again pooled baseline and follow-up data within 
a linear mixed model framework to quantify the relation-
ships between circadian timing metrics derived from the 
MyFoodRepo, GENEActiv and Actiheart wearables and 
glycaemic variables (Fig. 4a).

The eating midpoint (i.e. the daily midpoint of all food 
and drink consumption) and eating duration were similar 
between non-GDM and GDM groups at baseline (Table 2). 
However, regression analysis across both time points 
revealed that an early eating midpoint and shorter eating 

duration were correlated with a higher amplitude glucose 24 
h rhythm (p=0.048 and p=0.008, respectively, Fig. 4b, c).

A similar analysis of wearable device-derived sleep 
metrics showed that a late sleep midpoint was associated 
with a lower amplitude glucose 24 h rhythm (Fig. 4d), and 
shorter sleep was associated with a longer glucose response 
t½ (Fig. 4e). Among the heart activity timing metrics, the 
strongest association was between a later peak time of the 
heart rate and higher fasting plasma glucose (Fig. 4a).

Discussion

Combining clinical, questionnaire and wearable device data 
to better characterise differences in glucose regulation, our 
study shows residual differences between GDM and non-
GDM groups in the postpartum period, even when investi-
gating only women with GDM and a normoglycaemic phe-
notype according to standard criteria. Women with GDM 
had a higher MAGE, a slower glucose decrease after meal 
consumption despite a tendency for a lower carbohydrate 
intake, and a reduced amplitude of the underlying glucose 
24 h rhythm. The continuous monitoring with multiple wear-
able devices highlighted that late circadian timing was cor-
related with poorer glycaemic control. A better and earlier 
detection of the metabolic risk of GDM could improve tar-
geting of lifestyle measures in this population at risk, includ-
ing possible interventions targeting the circadian rhythms.

Table 2   Comparison of GDM 
and non-GDM groups across 
food and drink consumption 
measured with the smartphone 
app, CGM metrics and 
parameters extracted with the 
glucose model

Data are presented as means ± SD, or as medians (IQR) if not normally distributed
p values were calculated using Welch separate variances t test for continuous variables, except for MAGE, 
which was compared with the Mann–Whitney U test

Characteristic GDM group Non-GDM group p value

Food and drink consumption (n =15) (n =15)
  Carbohydrates, % of energy intake 39.4±6.0 44.9±5.6 0.02
  Protein, % of energy intake 17.1±3.4 16.0±3.2 0.40
  Fat, % of energy intake 43.5±5.9 39.0±4.2 0.03
  Energy intake, kJ/day (kcal/day) 6538±2417 (1562.5±577.8) 7352±1404 (1757.1±335.5) 0.29
  Eating duration, h 13.7±1.4 13.6±1.6 0.74
  Eating midpoint, h 14.9±1.3 14.6±1.8 0.67
CGM metrics n =17 n =15
  Mean glucose, mmol/l 4.5±0.4 4.4±0.5 0.36
  CV, % 16.8±3.9 15.0±2.6 0.14
  MAGE, mmol/l 1.46 (1.32–1.69) 1.26 (1.08–1.38) 0.04
Glucose model parameters n =14 n =15
  Baseline, mmol/l 4.0±0.4 3.8±0.4 0.24
  24 h amplitude, mmol/l 0.4±0.2 0.6±0.2 0.005
  Response t½, h 1.9±0.5 1.4±0.2 0.01
  Mean response height, mmol/l 0.7±0.2 0.5±0.2 0.07
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In contrast to HbA1c, the increased MAGE between 
GDM and non-GDM women at 1–2 months postpar-
tum remained significant when the five individuals with 
prediabetes were excluded from analysis. MAGE quan-
tifies short-term glucose variability and is associated 
with impaired early-phase insulin secretion in GDM 
[39]. It is also associated with oxidative stress that could 
contribute to the complications of type 2 diabetes [12] 

and atherosclerosis [40]. An elevated MAGE has been 
observed among Asian women after GDM [41], and was 
also associated with decreased beta cell function. How-
ever, Asian populations might show specificities regarding 
beta cell function [42] compared with our study of mostly 
European descent. Thus, MAGE could be an early marker 
of reduced beta cell function, even in the absence of dif-
ferences in standard glycaemic variables.
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Fig. 3   In a linear mixed model pooling all baseline and follow-up 
data, glycaemic variables are associated with clinical measurements 
and lifestyle factors as measured with questionnaires. (a) Points show 
the inferred regression coefficient, horizontal lines the 95% CI; p val-
ues are also shown. The dependent variables were log-transformed 
(natural log). (b–e) Examples of regressions for specific variables. β 

denotes the inferred regression coefficient (with 95% CI), which is 
also shown graphically (grey line and shaded blue, respectively). Blue 
symbols, non-GDM group; red symbols, GDM group; circles, base-
line; triangles, follow-up. MET, metabolic equivalent of task; quest, 
questionnaire
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Fig. 4   The relationship between 
wearable device-derived tim-
ing metrics and glycaemic 
variables. (a) The β regression 
coefficients between glycaemic 
and timing variables are shown 
as a heat map. The dependent 
variables were log-transformed 
(natural log). *p<0.05, 
**p<0.01. (b–e) Examples 
of regressions for specific 
variables. β denotes the inferred 
regression coefficient (with 95% 
CI), which is also shown graphi-
cally (grey line and shaded blue, 
respectively). Blue symbols, 
non-GDM group; red symbols, 
GDM group; circles, baseline, 
triangles, follow-up. HR, heart 
rate; HRV, heart rate variability
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The integration of the ingestion events with CGM data 
showed a 30 min longer mean glucose decrease after meal 
consumption in the GDM group. One explanation could be 
that higher GDM-related insulin resistance persists in the 
postpartum period [43]. Reduced rates of insulin secretion 
could also contribute to this slower decrease in postprandial 
glucose [44, 45]. Both these hypotheses, given the absence 
of differences in fibre intake or in physical activity, could 
explain the increased risk of progression to type 2 diabetes. 
We propose that using finer tools with high temporal resolu-
tion and modelling of postprandial glucose response could 
better characterise the underlying metabolic state of GDM in 
women who would not be considered prediabetic by standard 
criteria [1, 46].

There is an intricate and bidirectional relationship 
between circadian clocks and metabolic health [47, 48], and 
circadian clocks in metabolic organs are essential regulators 
of glucose and lipid homeostasis [18, 49]. Our study presents 
two key insights into circadian rhythms in the postpartum 
period. First, the amplitude of the underlying glucose 24 h 
oscillations was less pronounced in the GDM group, which 
might indicate an early perturbation of circadian rhythms 
in this population. This differential rhythmic activity could 
be caused by differences in glucose processing kinetics and 
linked to the central circadian clock in the suprachiasmatic 
nucleus [50] or the peripheral circadian clocks [51]. Sec-
ond, we found multiple associations between the glucose 
24 h rhythm and behavioural patterns. We observed that a 
high amplitude of the glucose 24 h rhythm was associated 
with a shorter eating duration and higher self-reported physi-
cal activity. The combination of wearable device data and 
questionnaire data showed that a lower amplitude of glucose 
24 h rhythm was also associated with later sleep midpoint, 
later eating midpoint and higher eveningness score and that 
higher fasting plasma glucose correlated with a later peak 
time of heart rate. The preference for morning vs evening is 
often termed ‘chronotype,’ and a late chronotype has been 
linked with increased risk of diabetes and the metabolic syn-
drome [52, 53], and a poorer glycaemic control in those with 
type 2 diabetes [54]. As such, the amplitude of the underly-
ing glucose 24 h rhythm could represent a novel biomarker 
delineating GDM and non-GDM groups, and future studies 
should better characterise its mechanistic underpinning and 
relationships with lifestyle variables.

The in-depth profiling of the metabolic and circadian sig-
natures of women in the postpartum period with wearable 
devices enabled the characterisation of glucose variability 
and 24 h patterns.

Nonetheless, the study has a few limitations. First, the 
study may be underpowered to discriminate between the two 
groups due to the small sample size. For example, in accord-
ance with the elevated MAGE and glucose response t½, 
the postprandial meal spikes and glucose CV were slightly 

higher in the post-GDM group, but these differences were 
not statistically significant. The study explored many wear-
able device-derived metrics simultaneously but, now that 
the most promising biomarkers have been identified, we aim 
to focus on a more restricted set of variables in follow-up 
studies. Second, we recruited women with GDM and normal 
glycaemic control at a single tertiary centre. Because most 
were of mostly European descent, not all results may apply 
to other populations and settings, impacting the external 
validity of this study. Third, while the energy intake per day 
was not significantly different between groups, the extent 
of missing food and drink data is difficult to assess. Finally, 
while the wearable device data revealed differences between 
the GDM and non-GDM groups in the postpartum period, 
we were unable to determine the precise moment at which 
these differences arose. Furthermore, the extent to which 
these differences are driven by lifestyle factors such as diet 
or by differences in BMI also remains to be fully elucidated.

Our study emphasises postpartum differences between 
GDM and non-GDM groups, encompassing elevated short-
term glucose variability (MAGE), slower postprandial 
glucose response and a weaker amplitude of glucose 24 h 
rhythm. Combining data across all time points and groups, 
the longitudinal regression analysis highlighted the relation-
ship between late chronotype and poorer glycaemic health 
in the postpartum period. The major clinical implication is 
the uncovering of biomarkers of metabolic health that may 
not be detected by current standard measurements in the 
postpartum period. Our results suggest that future interven-
tions based on earlier meal timing, a shorter eating window 
and an earlier sleep midpoint may be useful for improving 
glycaemic control in the postpartum period and thus mitigate 
the long-term cardiometabolic risk of GDM. We propose 
wearable technologies to assess the adherence and individual 
response to interventions that would complement the stand-
ard clinical measurements and questionnaires in trials evalu-
ating personalised lifestyle measures in people at increased 
metabolic risk.
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